作为一名优秀的教师,编写教案是组织教学活动的重要环节。教案不仅帮助理清教学思路,还能提高教学效果。以下是初中数学教案的实用模板和步骤,供大家参考,以便更好地进行教学准备。希望对有需要的老师有所帮助。

◈ 初中数学教案模板步骤
学习目标:
1、理解并掌握单项式、单项式的系数、单项式的次数的概念;
2、能确定一个单项式的系数和次数。
3、能用含字母的式子表示简单实际问题中的数量关系。
教学重点:
单项式、单项式的系数、单项式的次数的概念
教学难点:
确定一个单项式的系数和次数。
教学流程:
一、情境诱导:
学校为了创建书香校园,每个班都配有一批图书,现在知道一本书的`价格是25元,我们七年级六班要买20本需要多少钱?要买y本书需要多少钱?你能把它表示出来吗?(像这种用含有字母的式子来表示数量关系,那么它还有什么特征?今天我们就一起来学习---单项式 板书:课题)
二、自学指导:
(下面请同学们打开课本56页)认真阅读课本(56页思考到57页练习,用你喜欢的颜色标注定义、关键词或你认为是重点的句子),并完成下面自学提纲:
1、填空:
(1)苹果每千克8元,则买b千克苹果( )元;
(2)某产品前年的产量是m件,去年的产量是前年产量的n倍,那么去年的产量是( )件;
(3)一个长方体的长和宽都是a,高是h,它的体积是( );
2、你所填式子有什么特点?
3、什么是单项式?它是怎样构成的?请举例说明。5是单项式吗?x呢?-n呢?
4、什么是单项式的系数和次数?请举例说明。
5、你能给0.9b赋予一个实际意义吗?
6、说出单项式 a , a2h, -mn, -0.8p , 单项式 ,πr2的次数和系数。
三、展示归纳:
抽有问题的学生逐个展示自学提纲中的问题答案,学生说,老师板书,再发动其他学生进行评价、补充、完善,老师根据每个题目的展示情况进行必要的讲解和强调;全部展示完毕后,老师对本节知识做系统梳理,关键点予以强调。(特别强调:单独的一个字母或一个数字还有π都是单项式,单项式的系数包括它前面的符号,单项式的次数必须是所有字母的指数和)
四、变式练习:
1、在式子单项式 , -4x, 单项式 , 0,a-b, 单项式 中,单项式有 ( ) A. 3个, B. 4个, C、5个, D、6个
2、下面各题的判断是否正确。
①-x2y3与x3没有系数; ( )
②-a3的系数是-1; ( )
③单项式 πr2h的系数是单项式 ; ( )
④7的次数是0。 ( )
3、说出下列单项式的系数和次数:
(1)2xny, (2)-32x2y3 .
4、(1)如果单项式52x2yn+1的次数是5,则n=___;
(2)若mx2yn是关于x、y的六次单项式且系数为-2,则m=___,n=_____.
五:课堂小结:
本节课你学到了什么知识? 你认为难点在哪儿?
你对同学们有什么提醒?还有哪个知识点没理解?
六、作业布置:
课本练习1,2,3
选做题 :
观察下列单项式-a , 2a2, -3a3 , 4a4 , -5a5 ,…
(1)写出第20xx个和第20xx个单项式:;
(2)试写出第m个和第m+1个单项式(m为正整数).
◈ 初中数学教案模板步骤
学习目标:
1、在具体情景中,了解单项式和多项式相乘的意义。
2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。
3、培养学生有条理的思考和表达能力。
学习重点:
单项式乘以多项式的法则
学习难点:
对法则的理解
学习过程
1.学习准备
1.叙述单项式乘以单项式的法则
2.计算
(1)(- a2b) ?(2ab)3=
(2) (-2x2y)2 ?(- xy)-(-xy)3?(-x2)
3、举例说明乘法分配律的`应用。
2.合作探究
(一)独立思考,解决问题
1、 问题: 一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的面积是多少?
结合图形,完成填空。
算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3
天共修筑路面 m2.
算法二:先分别计算每天修筑路面的.面积,然后相加,则3天修路面 m2.
因此,有 = 。
3.你能用字母表示乘法分配律吗?
4.你能尝试单项式乘以多项式的法则吗?
(二)师生探究,合作交流
1、例3 计算:
(1) (-2x) (-x2?x+1) (2)a(a2+a)- a2 (a-2)
2、练一练
(1)5x(3x+4) (2) (5a2? a+1)(-3a)
(3)x(x2+3)+x2(x-3)-3x(x2?x-1)
(4)(?a)(-2ab)+3a(ab-b-1))
(三)学习
对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?
(四)自我测试
1、教科书P59 练习 3,结合解题,单项式乘以多项式的几何意义。
2、判断题
(1)-2a(3a-4b) =-6a2-8ab ( )
(2) (3x2-xy-1) ? x =x3 -x2y-x ( )
(3)m2- (1- m) = m2- - m ( )
3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于 ( )
A. -1 B. 0 C. 1 D. 无法确定
4、计算(20xx 贺州中考)
(-2a)?( a3 -1) =
5、(3m)2(m2+mn-n2)=
(五)应用拓展
1、计算
(1)2a(9a2-2a+3)-(3a2) ?(2a-1)
(2)x(x-3)+2x(x-3)=3(x2-1)
2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。
3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?
◈ 初中数学教案模板步骤
一、教学目的
1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.
2.注意培养学生归纳、概括能力,以及运算能力.
3.通过单项式的乘法法则在生活中的应用培养学生的应用意识.
二、重点、难点
重点:掌握单项式与单项式相乘的法则.
难点:分清单项式与单项式相乘中,幂的运算法则.
三、教学过程
复习提问:
什么是单项式?什么叫单项式的系数?什么叫单项式的次数?
引言 我们已经学习了幂的运算性质,在这个基础上我们可以学习整式的乘法运算.先来学最简单的整式乘法,即单项式之间的乘法运算(给出标题).
新课 看下面的例子:计算
(1)2x2y·3xy2; (2)4a2x2·(—3a3bx).
同学们按以下提问,回答问题:
(1)2x2y·3xy2
①每个单项式是由几个因式构成的,这些因式都是什么?
2x2y·3xy2=(2·x2·y)·(3·x·y2)
②根据乘法结合律重新组合
2x2y·3xy2=2·x2·y·3·x·y2
③根据乘法交换律变更因式的位置
2x2y·3xy2=2·3·x2·x·y·y2
④根据乘法结合律重新组合
2x2y·3xy2=(2·3)·(x2·x)·(y·y2)
⑤根据有理数乘法和同底数幂的乘法法则得出结论
2x2y·3xy2=6x3y3
按以上的分析,写出(2)的`计算步骤:
(2)4a2x2·(—3a3bx)
=4a2x2·(—3)a3bx
=[4·(—3)]·(a2·a3)·(x2·x)·b
=(—12)·a5·x3·b
=—12a5bx3.
通过以上两题,让学生总结回答,归纳出单项式乘单项式的运算步骤是:
①系数相乘为积的系数;
②相同字母因式,利用同底数幂的乘法相乘,作为积的因式;
③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;
④单项式与单项式相乘,积仍是一个单项式;
⑤单项式乘法法则,对于三个以上的单项式相乘也适用.
看教材,让学生仔细阅读单项式与单项式相乘的法则,边读边体会边记忆.
利用法则计算以下各题.
例1 计算以下各题:
(1)4n2·5n3;
(2)(—5a2b3)·(—3a);
(3)(—5an+1b)·(—2a);
(4)(4×105)·(5×106)·(3×104).
解:(1) 4n2·5n3
=(4·5)·(n2·n3)
=20n5;
(2) (—5a2b3)·(—3a)
=[(—5)·(—3)]·(a2·a)·b3
=15a3b3;
(3) (—5an+1b)·(—2a)
=[(—5)·(—2)]·(an+1·a)b
=10an+2b;
(4) (4·105)·(5·106)·(3·104)
=(4·5·3)·(105·106·104)
=60·1015
=6·1016.
例2 计算以下各题(让学生回答):
(3)(—5amb)·(—2b2);
(4)(—3ab)(—a2c)·6ab2.
=3x3y3;
(3) (—5amb)·(—2b2);
=[(—5)·(—2)]·am·(b·b2)
=10amb3
(4)(—3ab)·(—a2c)·6ab2
=[(—3)·(—1)·6]·(aa2a)·(bb2)·c
=18a4b3c.
小结 单项式与单项式相乘是整式乘法中的重要内容,它的运算法则的导出主要依据是,乘法的交换律与结合律以及幂的运算性质.
◈ 初中数学教案模板步骤
一、教学内容分析
本节课的主要内容是通过用字母表示简单的数量关系引出单项式及有关的概念,为进一步学习多项式、整式的加减做充分的准备。
二、教学目标
知识与技能:
了解代数式的概念,会列代数式表示简单的数量关系,掌握代数式的书写注意事项。
理解单项式的概念,掌握单项式的系数和次数的概念,能判断一个代数式是不是单项式,对于一个单项式能说出它的系数和次数。
过程与方法:
通过练习、合作探究用字母表示简单的数量关系。
通过引导学生自主学习、合作学习及变式训练掌握单项式、单项式的系数和次数的概念。
情感态度与价值观:
通过观察、体验、运用,让学生经历探索数量关系和变化规律的过程,感受到用字母表示数的优越性。
在进一步理解用字母表示数量关系的过程中建立符号意识,激发学生学习数学的积极性。
三、教学重难点
重点:单项式及单项式的.系数、次数的概念;准确迅速地确定一个单项式的系数和次数。
难点:单项式有关概念的`建立及分析实际问题并用正确的单项式表示这些数量关系。
四、教学准备
多媒体课件、堂清检测卡
五、教学过程
导入新课:
复习旧知识,引出新知识。
展示课件,从练习结果导出单项式的概念。
新课讲授:
创设情境,通过课件演示和讨论,激发学生的学习兴趣。
自学课本,引导学生思考并回答问题,归纳单项式的概念。
尝试练习,通过判断代数式是否为单项式,加深对单项式概念的理解。
学生讨论,针对尝试练习中出现的不同答案自行讨论,教师适当引导。
巩固练习:
给出单项式,让学生指出其系数和次数。
通过填空题和判断题,进一步巩固单项式的概念。
课堂小结:
回顾本节课的知识点,强调单项式及单项式的系数、次数的概念。
鼓励学生结合本节课的学习从知识、情感、价值观等方面谈自己的收获与感想。
布置作业:
必做题:课本相关练习题,要求指出单项式的系数与次数。
选做题:拓展题,如给出关于x、y的五次单项式,求a、b的值。
◈ 初中数学教案模板步骤
教学目标
1笔寡生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;
2迸嘌学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学重点和难点
重点和难点:正确地求出代数式的值
课堂教学过程设计
一、从学生原有的认识结构提出问题
1庇么数式表示:(投影)
(1)a与b的和的平方;(2)a,b两数的平方和;
(3)a与b的和的50%
2庇糜镅孕鹗龃数式2n+10的意义
3倍杂诘2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)
某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50蔽颐墙上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值闭饩褪潜窘诳挝颐墙要学习研究的内容
二、师生共同研究代数式的值的意义
1庇檬值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的`值
2苯岷仙鲜隼题,提出如下几个问题:
(1)求代数式2x+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象
然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)
例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70
注意:如果代数式中省略乘号,代入后需添上乘号
例2根据下面a,b的值,求代数式a2-的值
(1)a=4,b=12,(2)a=1,b=1
解:(1)当a=4,b=12时,
a2-=42-=16-3=13;
(2)当a=1,b=1时,
a2-=-=
注意(1)如果字母取值是分数,作乘方运算时要加括号;
(2)注意书写格式,“当……时”的字样不要丢;
(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果
三、课堂练习
1(1)当x=2时,求代数式x2-1的值;
(2)当x=,y=时,求代数式x(x-y)的值
2钡盿=,b=时,求下列代数式的值:
(1)(a+b)2;(2)(a-b)2
3钡眡=5,y=3时,求代数式的值
答案:1.(1)3;(2);2.(1);(2);3..
四、师生共同小结
首先,请学生回答下面问题:
1北窘诳窝习了哪些内容?
2鼻蟠数式的值应分哪几步?
3痹“代入”这一步应注意什么”
其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.
五、作业
当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b);
今天的内容就介绍到这里了。
◈ 初中数学教案模板步骤
一、教材分析
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:
(一)知识技能目标:
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的.方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:
合并同类项
五、教学关键:
同类项的概念
六、教学准备:
教师:
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
学生:
1、复习有关单项式的概念、有理数四则运算及去括号的法则)
2、每小组制作大小不等的两个长方体纸盒模型。
◈ 初中数学教案模板步骤
①结合你对一元一次方程中的一次的理解,说一说你对一次函数中的“一次”的理解. ②k可以是怎样的数?
③你怎样认识一次函数和正比例函数的关系?
一个常数b的和即 Y=kx+b 定义:一般地,形
如
Y=kx+b( k,b 是常数,k≠0 )的函数,叫做一次函数, 当
b=0时,
Y=kx+b即Y=kx,所以说正比例函数是一种特殊的一次函数。
例1、下列函数中,Y是X的一次函数的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X
学生独立
A①②③B①③④C①②④D①②③④
例2、写出下列各题中x与y之间的关系式,并判
解释与应用
断,y是否为x的`一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间(时)之间的关系式;②圆的面积y(厘米2)与他的半径x(厘米)之间的关系:③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度y(厘米)之间的关系式
◈ 初中数学教案模板步骤
一、教学目标
1、了解二次根式的意义;
2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3、掌握二次根式的性质和,并能灵活应用;
4、通过二次根式的计算培养学生的逻辑思维能力;
5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。
二、教学重点和难点
重点:
(1)二次根的意义;
(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法
启发式、讲练结合。
四、教学过程
(一)复习提问
1、什么叫平方根、算术平方根?
2、说出下列各式的意义,并计算
(二)引入新课
新课:二次根式
定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:
(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的'一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。
例1当a为实数时,下列各式中哪些是二次根式?
例2 x是怎样的实数时,式子在实数范围有意义?
解:略。
说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。
例3当字母取何值时,下列各式为二次根式:
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x>0,当x>0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
◈ 初中数学教案模板步骤
《正方形》教学设计
教学内容分析:
⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。
⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。
⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。
学生分析:
⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。
⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。
教学目标:
⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。
⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。
⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。
重点:掌握正方形的性质与判定,并进行简单的推理。
难点:探索正方形的判定,发展学生的推理能
教学方法:类比与探究
教具准备:可以活动的四边形模型。
一、教学分析
(一)教学内容分析
1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)
2.本课教学内容的地位、作用,知识的前后联系
《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。
3.本课教学内容的特点,重点分析体现新课程理念的特点
本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。
(二)教学对象分析
1.学生所在地区、学校及班级的特色
我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。
2.学生的年龄特点和认知特点
班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。
教学过程:
一:复习巩固,建立联系。
【教师活动】
问题设置:①平行四边形、矩形,菱形各有哪些性质?
②的四边形是平行四边形。的平行四边形是矩形。的平行四边形是菱形。的四边形是矩形。的四边形是菱形。
【学生活动】
学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。
【教师活动】
评析学生的结果,给予表扬。
总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。
演示平行四边形变为矩形菱形的过程。
二:动手操作,探索发现。
活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?
【学生活动】
学生拿出自备矩形纸片,动手操作,不难发现它是正方形。
设置问题:①什么是正方形?
观察发现,从活动中体会。
【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。
【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。
设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?
【学生活动】
小组讨论,分组回答。
【教师活动】
总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。
设置问题③正方形有那些性质?
【学生活动】
小组讨论,举手抢答。
【教师活动】
表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角
活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?
学生活动
折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。
教师活动
演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?
的菱形是正方形,的矩形是正方形,的平行四边形是正方形,的四边形是正方形。
学生活动
小组充分交流,表达不同的意见。
教师活动
评析活动,总结发现:
一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;
有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;
有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;
四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。
以上是正方形的判定方法。
正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?
学生交流,感受正方形
三,应用体验,推理证明。
出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。
方法一解:∵四边形ABCD是正方形
∴∠ABC=90°(正方形的四个角是直角)
BC=AB=4cm(正方形的四条边相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的对角线互相平分)
∴AO=×4=2cm
方法二:证明△AOB是等腰直角三角形,即可得证。
学生活动
独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。
教师活动
总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。
出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?
学生活动
小组交流,分析题意,整理思路,指名口答。
教师活动
说明思路,从已知出发或者从已有的判定加以选择。
四,归纳新知,梳理知识。
这一节课你有什么收获?
学生举手谈论自己的收获。
请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。
发表评论
教学目标:
情意目标:培养学生团结协作的精神,体验探究成功的乐趣。
能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。
认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。
教学重点、难点
重点:等腰梯形性质的探索;
难点:梯形中辅助线的添加。
教学课件:PowerPoint演示文稿
教学方法:启发法、
学习方法:讨论法、合作法、练习法
教学过程:
(一)导入
1、出示图片,说出每辆汽车车窗形状(投影)
2、板书课题:5梯形
3、练习:下列图形中哪些图形是梯形?(投影)
结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。
5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)
6、特殊梯形的分类:(投影)
(二)等腰梯形性质的探究
【探究性质一】
思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)
猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)
如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C
想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?
等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。
【操练】
(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)
(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)
【探究性质二】
如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)
如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)
等腰梯形性质:等腰梯形的两条对角线相等。
【探究性质三】
问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)
问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)
等腰梯形性质:同以底上的两个内角相等,对角线相等
(三)质疑反思、小结
让学生回顾本课教学内容,并提出尚存问题;
学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。
◈ 初中数学教案模板步骤
教学目标
1、使学生掌握的概念,图象和性质。
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。
(3)x能利用的性质比较某些幂形数的大小,会利用的图象画出形如x的图象。
2、x通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。
3、通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。
教学建议
教材分析
(1)x是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。
(2)x本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数x在x和x时,函数值变化情况的区分。
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。
教法建议
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是x的样子,不能有一点差异,诸如x,x等都不是。
(2)对底数x的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。
教学设计示例
课题
教学目标
1。x理解的定义,初步掌握的图象,性质及其简单应用。
2。x通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。
3。x通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。
教学重点和难点
重点是理解的定义,把握图象和性质。
难点是认识底数对函数值影响的认识。
教学用具
投影仪
教学方法
启发讨论研究式
教学过程
一、x引入新课
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数。
1、6、(板书)
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个……一个这样的细胞分裂x次后,得到的细胞分裂的个数x与x之间,构成一个函数关系,能写出x与x之间的函数关系式吗?
由学生回答:x与x之间的关系式,可以表示为x。
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了x次后绳子剩余的长度为x米,试写出x与x之间的函数关系。
由学生回答:x。
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量x均在指数的位置上,那么就把形如这样的函数称为。
x的概念(板书)
1、定义:形如x的函数称为。(板书)
教师在给出定义之后再对定义作几点说明。
2、几点说明x(板书)
(1)x关于对x的规定:
教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若x会有什么问题?如x,此时x,x等在实数范围内相应的函数值不存在。
若x对于x都无意义,若x则x无论x取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定x且x。
(2)关于的定义域x(板书)
教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时,x也是一个确定的实数,对于无理指数幂,学过的有理指数幂的"性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为x。扩充的另一个原因是因为使她它更具代表更有应用价值。
(3)关于是否是的判断(板书)
刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。
(4)x,x
(5)x。
学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3)x可以写成x,也是指数图象。
最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的.图象,再细致归纳性质。
3、归纳性质
作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。
函数
1、定义域x:
2、值域:
3、奇偶性x:既不是奇函数也不是偶函数
4、截距:在x轴上没有,在x轴上为1。
对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于x轴上方,且与x轴不相交。)
在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故x的值应有正有负,且由于单调性不清,所取点的个数不能太少。
此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当x越小,图象越靠近x轴,x越大,图象上升的越快),并连出光滑曲线。
二、图象与性质(板书)
1、图象的画法:性质指导下的列表描点法。
2、草图:
当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且x,取值可分为两段)让学生明白需再画第二个,不妨取x为例。
此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即x=x与x图象之间关于x轴对称,而此时x的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到x的图象。
最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如x的图象一起比较,再找共性)
由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。
填好后,让学生仿照此例再列一个x的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。
3、性质。
(1)无论x为何值,x都有定义域为x,值域为x,都过点x。
(2)x时,x在定义域内为增函数,x时,x为减函数。
(3)x时,x,x x时,x。
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。
三、简单应用x (板书)
1、利用单调性比大小。x(板书)
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。
例1、x比较下列各组数的大小
(1)x与x;x(2)x与x;
(3)x与1x。(板书)
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。
解:x在x上是增函数,且<x。(板书)
教师最后再强调过程必须写清三句话:
(1)x构造函数并指明函数的单调区间及相应的单调性。
(2)x自变量的大小比较。
(3)x函数值的大小比较。
后两个题的过程略。要求学生仿照第(1)题叙述过程。
例2。比较下列各组数的大小
(1)x与x;x(2)x与x ;
(3)x与x。(板书)
先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说x可以写成x,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说x可以写成x,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)
最后由学生说出x>1,<1。
解决后由教师小结比较大小的方法
(1)x构造函数的方法:x数的特征是同底不同指(包括可转化为同底的)
(2)x搭桥比较法:x用特殊的数1或0。
四、巩固练习
练习:比较下列各组数的大小(板书)
(1)x与x x(2)x与x;
(3)x与x;x(4)x与x。解答过程略
五、小结
1、的概念
2、的图象和性质
3、简单应用
六、板书设计
◈ 初中数学教案模板步骤
教学目标
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7 应变成 12+7-5,而不能变成12-7+5。
教学设计示例一
有理数的加减混合运算(一)
一、素质教育目标
(一)知识教学点
1.了解:代数和的概念.
2.理解:有理数加减法可以互相转化.
3.应用:会进行加减混合运算.
(二)能力训练点
培养学生的口头表达能力及计算的准确能力.
(三)德育渗透点
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.
(四)美育渗透点
学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.
二、学法引导
1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练
习,步步为营,分散难点,解决关键问题.
2.学生写法:练习→寻找简单的一般性的方法→练习巩固.
三、重点、难点、疑点及解决办法
1.重点:把加减混合运算算式理解为加法算式.
2.难点:把省略括号和的形式直接按有理数加法进行计算.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.
七、教学步骤
(一)创设情境,复习引入
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目: -9+(+6);(-11)-7.
师:(1)读出这两个算式.
(2)“+、-”读作什么?是哪种符号?
“+、-”又读作什么?是什么符号?
学生活动:口答教师提出的问题.
师继续提问:(1)这两个题目运算结果是多少?
(2)(-11)-7这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正).
师小结:减法往往通过转化成加法后来运算.
【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.
师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算.(板书课题2.7有理数的加减混合运算(1))
教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成.
(二)探索新知,讲授新课
1.讲评(-9)+(-6)-(-11)-7.
(1)省略括号和的形式
师:看到这个题你想怎样做?
学生活动:自己在练习本上计算.
教师针对学生所做的方法区别优劣.
【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法.
师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:
原式=(-9)+(+6)+(+11)+(-7)
=-9+6+11-7.
提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成
学生活动:先自己练习尝试用两种读法读,口答(教师纠正).
【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力.
巩固练习:(出示投影1)
1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来.
(1)(+9)-(+10)+(-2)-(-8)+3;
(2)+--.
2.判断
式子-7+1-5-9的正确读法是.
A.负7、正1、负5、负9;
B.减7、加1、减5、减9;
C.负7、加1、负5、减9;
D.负7、加1、减5、减9;
学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答.
【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法.
2.用加法运算律计算出结果
师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加.
-9+6+11-7
=-9-7+6+11.
学生活动:按教师要求口答并读出结果.
巩固练习:(出示投影2)
填空:
1.-4+7-4=-______________-_______________+_______________
2.+6+9-15+3=_____________+_____________+_____________-_____________
3.-9-3+2-4=____________9____________3____________4____________2
4.____________________________________
学生活动:讨论后回答.
【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点.
师:-9-7+6+11怎样计算?
学生活动:口答
[板书]
-9-7+6+11
=-16+17
=1
巩固练习:(出示投影3)
1.计算(1)-1+2-3-4+5;
(2).
2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;
(2).
学生活动:四个同学板演,其他同学在练习本上做.
【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中.
师小结:有理数加减法混合运算的题目的步骤为:
1.减法转化成加法;
2.省略加号括号;
3.运用加法交换律使同号两数分别相加;
4.按有理数加法法则计算.
(三)反馈练习
(出示投影4)
计算:(1)12-(-18)+(-7)-15;
(2).
学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的.
【教法说明】这两个题目是本节课的重点.采用测验的方式来达到及时反馈.
(四)归纳小结
师:1.怎样做加减混合运算题目?
2.省略括号和的形式的两种读法?
学生活动:口答.
【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统.
八、随堂练习
1.把下列各式写成省略括号的和的形式
(1)(-5)+(+7)-(-3)-(+1);
(2)10+(-8)-(+18)-(-5)+(+6).
2.说出式子-3+5-6+1的两种读法.
3.计算
(1)0-10-(-8)+(-2);
(2)-4.5+1.8-6.5+3-4;
(3).
九、布置作业
(一)必做题:1.计算:(1)-8+12-16-23;
(2);
(3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
(二)选做题:(1)当时,,,哪个最大,哪个最小?
(2)当时,,,哪个最大,哪个最小?
十、板书设计
◈ 初中数学教案模板步骤
一、指导思想
以《初中数学新课程标准》为依据,全面推进素质教育。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据 、进行计算、推理 和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想 和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想象力和创造 力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文 明的重要组成部分。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利 于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不 同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、 家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富 有个性的过程。
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发 学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流 的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活 动中所表现出来的情感与态度,帮助学生认识自我,建立信心。
现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式 产生了重大的影 响。数学课程的设计与实施应重视运用现代信息技术,特别要充分考虑计算器、计算机对数 学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作 为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更 多的精力投入到现实的、探索性的数学活动中去。
二、学生情况分析
对八年级上册学生的学习情况与期末测试成绩分析,可以看出学生已经初步掌握了平行线、特殊三角形、直棱柱等几何知识,并具备了一定的逻辑推理能力和表达能力;学会了解一元一次不等式(组);初步形成了用函数的眼光、概率统计的角度解决一些实际问题。在学习习惯方面,部分学生的不良习惯得到了纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业等,都应得到强化;在学习兴趣方面,大部分学生对数学学习的积极性较高,但仍有部分学生对数学信心不足,因此开学初要给学生树信心,刚开始起点宜低,讲解宜慢,结合学生实际,宜继续采用数形结合的方法进行数学教学,使学生适应八年级下册的数学学习。
三、教材内容分析
第1章 二次根式
本章的主要内容有二次根式,二次根式的性质,二次根式的.运算(根号内不含字母、不含分母有理化)。二次根式属于“数与代数”领域的内容,它是在学生学习了平方根、立方根等内容的基础上进行的,是对七年级上册“实数”“代数式”等内容的延伸和补充。二次根式的运算以整式的运算为基础,在进行二次根式的有关运算时,所使用的运算法则与整式、分式的相关法则类似;在进行二次根式的加减时,所采用的方法与合并同类项类似;在进行二次根式的乘除时,所使用的法则和公式与整式的乘法运算法则及乘法公式类似。这些都说明了前后知识之间的内在联系。
第2章 一元二次方程
本章的主要内容是一元二次方程的解法和应用,课本首先引入一元二次方程的概念,从实数的性质,将分解成为两个一次因式相乘积为零的一元二次方程转化为两个一元一次方程入手,介绍了利用因式分解法解一元二次方程的方法,体现了数学的转化思想。接着课本首先从数的开平方的知识出发,直接讲开平方法,然后依次介绍了配方法和公式法。在讲述公式法的同时,课本特别给出了利用计算器解一元二次方程的解法示例,以揭示技术发展给数学学习带来的影响,这也是一种新的尝试。同时,以建立数学模型为主要着力点介绍了一元二次方程的应用,并在例题的设置上充分考虑了图表、立体图形、物体运动和经济活动中的问题背景,力图使学生在现实的环境中学习数学。
第3章 频数及其分布
统计学是搜集数据、分析数据,并根据它获得总体信息的科学.本套教材在七年级上册安排了 “数据与图表”,着重介绍了数据的收集、整理的初步方法;在八年级上册安排了“样本与数据分析初步”,通过对数据集中程度和离散程度的统计量的计算,初步了解了如何对数据的基本状态进行分析.为了进一步分析、处理数据,供决策时参考,有时我们还要了解数据的分布情况,找出新的特征数.“频数及其分布”这一章就是解决了这一问题.考虑到频数、频率、频数直方图、频数折线图与日常生活、自然、社会和科学技术领域的密切联系,《数学课程标准》增加了这块内容的份量.本套教材将这块内容独立设章的目的,一方面可用足够的篇幅来更清楚、更详细阐述,也是为每册循序渐进地学习概率与统计知识所作的精心安排.
本章知识结构框图如下:
第4章命题与证明
本章是实验几何过渡到论证几何的启蒙章节。我们应该认识到学习欧几里得几何对锻炼和培养学生的逻辑推理能力,有着其他内容无法代替的作用;然而几何入门难的问题多年来一直存在。对于几何的处理,本套教科书根据《数学课程标准》的要求,提供了一个全新的思路。本章内容处于“实验几何”与“论证几何”的交接点上,它对学生顺利地转入论证几何的学习,有着重要的思维润滑作用,能有效地帮助学生认识到学习论证几何的必要性,继而为下阶段的学习铺平了道路。
学生在认识几何证明的必要性方面是本节教学的第一个难点与重点。学生已有一年半的实验几何的学习基础,固然对后阶段的学习有很重要的奠基作用,但也有一定的负迁移作用。学生已经习惯于从“量一量” “算一算”及图形运动变换中直接得出图形性质,并有了一定的初级、简单推理时充当理由的使用历史,即基本默认了这些性质。因此,使学生充分认识到几何证明的必要性便成为本章的一个难点。掌握证明的一般步骤与格式是本章教学的第二个重点与难点。
第5章平行四边形
本章是学习了三角形、几何证明的基础上,开始研究四边形,四边形的学习与三角形有着密切的联系,许多四边形的问题都通过连线转化为两个三角形的问题来解决,且研究的方法有许多类同的地方,所以说四边形是三角形的应用和深化;另外在学了几何证明后,平行四边形内容为证明实例提供了丰富的材料,让学生有机会实践、巩固前面的知识.本章一开始从多边形引入,在知识体系上看也是顺理成章,探索多边形的内角和办法并不深奥,所隐含化归为三角形的思想却是数学中常用的思想方法,会引起学生的关注和兴趣.平行四边形是中心对称图形,利用中心对称变换使平行四边形的许多性质得到合理的解释,用轴对称变换来研究等腰三角形,用中心对称变换来研究平行四边形,用变换的观点来阐述图形的几何性质也是新教材的特点之一.如三角形中位线的定理用中心对称的观点来证明显得合理且简单明了.本章还穿插了逆命题和逆定理的概念,前一章是“命题与证明”,为了避免在一章中集中过多的抽象概念,给学生带来困难,所以把逆命题与逆定理放在本章,既分散了难点,又因为已有一定量知识积累,有利于学生理解掌握.
第6章 特殊平行四边形与梯形
本章是上一章《平行四边形》的深化且延续,从知识体系上看从旋转变换定义了中心对称图形平行四边形以后,从角的特殊性(直角)、从边的特殊性(等边)得到矩形和菱形;从对图形研究的角度看,推理论证在这一章中得到加强与深化,进一步要求学生能清晰、有条理表达自己的思考过程,做到言之有理、落笔有据.同时通过“合作学习”等形式,让学生自主探索这些基本图形的性质及其相互关系,从而丰富对空间图形的认识和感受.本章的主要内容有矩形、菱形、正方形、梯形的概念、性质和四边形是矩形、菱形、正方形及等腰梯形的条件.有些内容在前两个学段学生已有接触,但还十分肤浅.本章不是对以前知识的简单复习,而是同类知识的螺旋上升.
特殊平行四边形与梯形的概念与性质是学好本章的关键,也是为学好整个平面几何打下一个坚实的基础,是本章的教学重点.与基本图形(矩形、菱形、正方形、梯形)的概念、性质及其相互关系随之而来的是几何证明,学生要正确理解证明的本身,需要一个较长的过程,是本章主要的教学难点.
四、具体教学措施
1、加强教学“六认真”, 面向全体学生。由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。
2、重视改进教学方法,坚持启发式,反对注入式。教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。
3、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。
4、改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上提高。
5、开展丰富多彩的课外活动,课外调查,数学建模,野外测量,七巧板游戏,课件演示。使学生乐在其中,乐此不疲。
◈ 初中数学教案模板步骤
一、学情分析
八年级是初中学习过程中的关键时期,起着承上启下的作用。下学期尤为重要,学生基础的好坏,直接影响到将来是否能升学。学生通过上学期的学习,算能力、阅读理解能力、实践探究能力得到了发展与培养,对图形及图形间数量关系有初步的认识,逻辑思维与逻辑推理能力得到了发展与培养,通过教育教学培养,绝大部分学生能够认真对待每次作业并及时纠正作业中的错误,课堂上能专心致志的进行学习与思考,学生的学习兴趣得到了激发和进一步的发展,课堂整体表现较为活跃。本学期将继续促进学生自主学习,让学生亲身参与活动,进行探索与发现,以自身的体验获取知识与技能;努力实现基础性与现代性的统一,提高学生的创新精神和实践能力;进一步激发学生的数学兴趣和爱好,通过各种教学手段帮助学生理解概念,操作运算,扩展思路。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学的主体,教师是教的主体作用,注重方法,培养能力。关注学困生和女生。
二、教材分析
本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:
第十六章 二次根式
本章主要内容是二次根式的概念、性质、化简和有关的计算。本章重点是理解二次根式的性质,及二次根式的化简和计算。本章的难点是正确理解二次根式的性质和运算法则
第十七章勾股定理
直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余, 30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。
第十八章 平行四边形
四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形等特殊四边形的用处更多。因此,四边形既是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度来看,本章的内容也是前面平行线和三角形等内容的应用和深化。
第十九章一次函数
一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数——一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的.观点认识现实世界的意识和能力。在教材中,通过体现“问题情境———建立数学模型——概念、规律、应用与拓展的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组、一次不等式的联系等。
第二十章 数据的分析
本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
三、提高学科教育质量的主要措施:
1、努力做好教学八认真工作。把教学八认真作为提高成绩的主要方法,认真研读新课程标准,认真钻研新教材,并根据新课程标准,认真扩充教材内容;认真上课,认真批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、探究题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长
7、开展分层教学,布置作业设置A、B、C三类,分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。
8、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
9、 培养学生学习。
◈ 初中数学教案模板步骤
一、指导思想
以学校工作计划重点开展教学工作:坚持做到德育为先,努力践行角色体验活动,在教学中搭建师生交流平台,提升和培养学生思想道德素质。同上学期一样,继续落实课堂有效性教学任务。努力加强课堂纪律管理,做好后进生的辅导工作,优化课堂结构。争取教学成绩稳步提升,为我校的教学质量提高做好服务。
二、教材分析
本学期教学内容主要介绍生物的生殖和发育、生物的遗传和变异及生物的进化、传染病和免疫,用药和急救、了解自己、增进健康。共6章,内容较上一个学期少了一些,探究实验减少了一些,增加了观察和思考,科学、社会、技术栏目。增加了学生的阅读量,扩大了知识面。
三、教学目标
1、全面提高学生的科学素养为宗旨,培养学生的创新精神和实践能力。
2、通过学习使学生更清楚地知道生物的生殖和发育,从而更有意识地保护生物,促进社会发展。
3、通过学习使学生知道如何健康地生活。
4、对学生进行唯物主义和爱国主义教育。
四、方法措施
1、继续深入学习有关的教育理论和转变教育观念,在继承传统教育优势的'基础上力争使自己的课堂教学有所创新和提高。
2、继续探究符合新课标的课堂教学模式,并注意及时收集和整理相关的资料和模式。
3、继续落实课堂有效性教学任务。努力加强课堂纪律管理,做好后进生的辅导工作,优化课堂结构。
4、组织好学生进行探究性学习并提高其质量,引导学生分工合作,乐于交流。
5、学习和应用现代教学手段和技术并运用到课堂教学中,提高课时效率和教学质量。积极参加教研教改。上好课,设计好教案,写好教学反思。
6、激发学生学习兴趣。精心设计导语;运用生动的语言;加强情感教育;精心诱导、强化教学。
7、鼓励学生自己观察、思考、提问,并在提出假设的基础上进行探究性方案的设计和实施。
◈ 初中数学教案模板步骤
为提高课堂效率、培养学生学习能力,为完成本学段对学生数学知识、数学能力的要求,特制定本计划。
一、学生基本情况分析
八年级二班共有48名学生,男生18人、女生30人。学生成绩参差不齐、水平较低,尖子生较少、后进生较多、中等生断层。另外,学生偏科严重,经过上一学期的补习,效果不是十分明显,又面临八年纪过度阶段,任务艰巨,不容乐观。
二、教学内容分析
本学期数学教材共有5章,分别为:11章一次函数、12章数据的描述、13章全等三角形、14章轴对称、15章整式。有新增内容,如函数和正式,也有进一步学习内容,如数据的描述和全等三角形.教材在教学设计中充分体现了人性化,例如在讲授新科时分为:"观察----思考----探究----讨论----归纳".对学生其到启导,分析的作用.在巩固知识方面更是因材施教,对不同学生有不同的要求,分为:"复习巩固――综合运用--拓广探究".
三、教学目的要求
1、在思想教育方面,培养学生爱国主义精神和民族自豪感,培养学生的学习热情和兴趣,教育学生树立远大理想和目标。
2、再知识传授方面,不但让学生学会知识,而且让学生会运用知识解决问题,让学生在掌握知识的同时养成良好的学习习惯.
3、在教学中培养学生的合作交流能力.
四、教学重点、难点分析
本学期的教学重点如下:
1、一次函数的'图象和性质。
2、三角形全等的条件。
3、整式的运算,乘法公式,因式分解。
本学期的教学难点如下:
1、用函数知识来解决方程和不等式。
2、用三角形全等的知识来解决有关问题。
3、会运用乘法公式来解决因式分解。
五、教学措施
1、积极运用现代化教育教学手段来提高教学效果,提高课堂容量。
2、精讲多练,因材施教,严格要求。
3、积极学习和运用新教法和学法。
4、引导学生学会学习,多鼓励少批评。
◈ 初中数学教案模板步骤
一、教材分析
(一)教材的地位和作用
本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.
(二)教材的重难点
本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.
二、教学目标分析
(一)知识技能目标
1.目标内容
(1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.
(2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.
2.目标分析
(1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.
(2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.
(二)过程目标
1.目标内容
在活动中感受方程思想在数学中的作用,进一步增强应用意识.
2.目标分析
利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决.
(三)情感目标
1.目标内容
(1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.
(2) 通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想.
2.目标分析
七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.
三、教材处理与教法分析
本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.
四、教学过程分析
(一)教学过程流程图
探究Ⅰ
(二)教学过程Ⅰ
(以探究为主线、形式多样化)
1.问题情境
(1) 多媒体展示有关盈亏的新闻报道,感受生活实际.
(2) 据此生活实例,展示探究Ⅰ,引入新课.
考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ.
2.讨论交流
(1) 学生结合自己的生活实际,交流对“盈利”、“亏损”含义的'理解.
(2) 学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)
(3) 要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由.在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识.
(4) 师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价.
让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫.
3.建立模型
(1) 学生自主探索,寻找已知量与未知量之间的关系,确定相等关系.
(2) 学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价.
(3) 师生互动:①两件衣服的进价和为 ;②两件衣服的售价和为 ;③由于进价 售价,由此可知两件衣服的盈亏情况.
(教师及时给出完整的解答过程)
学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验.
4.小结
一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断.
培养学生科学的学习态度与严谨的学习作风.
探究Ⅱ
(三)教学过程Ⅱ
1.在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突.
恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性.
启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:
2.列代数式
费用=灯的售价+电费
电费=0.5×灯的功率(千瓦)×照明时间(时)
在此基础上,用t表示照明时间(小时).要求学生列出代数式表示这两种灯的费用.
节能灯的费用(元):60+0.5×0.011t.
白炽灯的费用(元):3+0.5×0.06t.
分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础.
3.特值试探
具体感知
学生分组计算:
t=1000、2000、2500、3000时,这两种灯具的使用费用,填入下表:
时间(小时)
1000
2000
2500
3000
节能灯的费用(元)
白炽灯的费用(元)
◈ 初中数学教案模板步骤
一、目标
1.用它们拼成各种形状不同的四边形,并计算它们的周长。
(鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)
2.教师揭示以上这些工作实际上是在进行整式的加减运算
3.回顾以上过程 思考:整式的加减运算要进行哪些工作?
生1:“去括号”
生2:“合并同类项”
师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,
二、揭示如何进行整式的加减运算
1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。
2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差.
(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)
解:(2a2-4a+1)-(-3a2+2a-5)
=2a2-4a+1+3a2-2a+5
=5a2-6a+6
3.拓展练习
(1)求多项式2x -3 +7与6x -5 -2的`和.
提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)
(2)(-3x2 –x +2)+(4x2 +3x -5)
(3)(4a2 -3a )+(2a2 +a -1)
(4)(x2 +5x –2 )-(x2 +3x -22)
(5)2(1-a +a2)-3(2-a –a2)
4.教学例3
先化简下式,再求值:
(做此类题目应先与学生一起探讨一般步骤:
(1)去括号。
(2)合并同类项。
(3)代值)
解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3
=15a2b –5ab2+4ab2 -12a2b)
=3a2b –ab2
三、小结
1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。
2.进行化简求值计算时
(1)去括号。
(2)合并同类项。
(3)代值
3.通过本节课的学习你还有哪些疑问?
四、布置作业
习题4.5 2. (3) ;4. (2);5。
五、课后反思
省略
◈ 初中数学教案模板步骤
教学目标
1、知识与技能
(1)在现实情境中,认识角是一种基本的几何图形,理解角的概念,学会角的表示方法
(2)认识角的度量单位度、分、秒,会进行简单的换算和角度计算
2、过程与方法
提高学生的识图能力,学会用运动变化的观点看问题
3、情感态度与价值观
经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲
重、难点与关键
1、重点:会用不同的方法表示一个角,会进行角度的换算是重点
2、难点:角的表示、角度的换算是难点
3、关键:学会观察图形是正确表示一个角的关键
教具准备
多媒体设备、量角器、时钟、四棱锥
教学过程
一、引入新课
1、观察时钟、四棱锥、
2、提出问题:
时钟的.时针与分针,棱锥相交的两条棱,都给我们什么样的平面图形的形象?请把它画出来
学生活动:进行独立思考、画图,然后观看教师的演示过程
教师活动:用多媒体演示角的形成过程:一条射线OA绕端点O旋转到OB的位置,得到的平面图形──角、
板书:角
二、新授
1、角的概念、
(1)提出问题:
从上面活动过程中,你能知道角是由什么图形组成的吗?
学生回答:两条射线、
(2)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边、(如下图)
2、角的表示
学生活动:阅读课本第137页有关内容,了解角的表示方法
教师活动:讲解角的不同表示方法,着重讲解一个顶点有多个角的表示方法
请用适当的方法表示下图中的每个角
学生活动:请一个学生板书练习,其余学生独立练习
教师活动:巡视学生练习情况,给予评价,对多数同学作出肯定评价
学生活动:阅读课本第138页思考题,进行小组交流,获得问题结论
教师活动:参与学生交流,并用多媒体演示平角、周角的形成过程,启发引导学生对问题进行探索,并对学生讨论结果进行评价
答案:分别形成平角、周角
3、角的度量、
教师活动:指导学生阅读课本P138页内容,讲解角的度量方法及度、分、秒的换算
三、巩固练习
1、课本第139页练习、
2、计算:
(1)4839+6741
(2)90-781940
(3)2230 (4)176523、
此:此练习由学生独立完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难,教师巡视过程中对个别学习困难的学生及时给以答疑解惑,并请学生板书后再讲评、
3、想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少度?
师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学生先从时针在分针转动到15分时,分针转过的角度与时针转过的角度的关系,并请学生在小组中进行交流,从而得出正确的答案、
答案:76、5、
四、课堂小结
师生互动,完成本节课的小结:
1、什么是角?组成角的图形是什么?如何表示一个角?
2、本节课还复习了平面、周角?怎样得到这两种角?
3、角的度量单位是什么?它们是如何换算的?
五、作业布置
1、课本第144页习题4、3第1、2、3、4题
2、选用课时作业设计
◈ 初中数学教案模板步骤
教学目标:
知识目标:有理数的概念,有理数的分类,熟练的写出某集合中的数。
过程与方法:感受分类的思想,分类的依据。
情感态度价值观:感受数的对称美
课堂教学过程
一.情境问题:
到目前为止,你能举出哪些数,你能把这些数分类吗?你的分类依据是什么?有理数:整数正整数,0,负整数。
分数正分数,负分数。
有理数:正有理数
负有理数。
二.尝试应用:
1课本第8页练习。补充:整数集合,负整数集合,分数集合。
2判断:1.正整数和负整数统称为整数。
2.小数不是有理数。
3正数和负数统称为有理数。
4分数包括正分数和负分数。
三.补偿提高:
将下列的数填在相应的.括号中。
-8.5,6,-21/5,0,-200,+13/5,-2,35,0.01,+86.
正整数集合:
负整数集合:
正分数集合:
负分数集合:
正数集合:
分数集合:
非正数集合:
自然数集合:
思考:既是正数又是整数的数是什么数?既是负数又是分数的数是什么数?
四.小结与反思:
本节课用到得思想,重要知识,注意问题,你的疑惑.
教后反思:
本节对有理数的分类:按正负来分,按整数和分数来分。明确分类标准。能正确的写出某些数的集合。
本节需要学生熟练。再有理数的分类的探讨上二班较流畅,但是正负来分为落实好。
◈ 初中数学教案模板步骤
一、从卷面分析学生,具体表现如下:
1、综合运用知识的能力较弱,主要表现在学生填空题、选择题、解决问题。主要原因是学生在学习过程中对新的知识体验不深,头脑中建立不清晰、不扎实。
2、没有形成良好的学习习惯。表现在有点复杂的数据和文字都对一些能力较弱或较差的学生造成一定的影响。
二、存在的问题
1、基础概念的理解不够透彻,造成对基础概念不能灵活运用。
2、计算作为一个基础知识和基础技能,还需加强训练。
3、解决问题时对条件问题的'分析综合能力还远远不够。解决问题策略有待提高。
三、改进措施
1、必须劣实数学基础。一定要重视知识的获得过程。
2、加强学生的学习习惯。学习态度和学习策略的培养。要重视培养学生审题意识,培养学生良好的解题习惯。
3、教师要关注学生中的弱势群体。要坚持做好以下工作;坚持“补心”与“补课”相结合。消除他们的心理障碍,帮助后进生形成良好的学习习惯。加强方法指导,严格要求后进生,从最基础的知识抓起,根据学生的差异,进行分层教学,努力使每位学生在原有基础上得到最大限度的发展。
一份耕耘,一份收获。教学工作苦乐相伴,我们将本着“勤学、善思、实干”的原则,一如既往,再接再厉。把工作搞得更好!
◈ 初中数学教案模板步骤
期末考试已经过去了,同学们的成绩也已经出来了。这个学期,我们班同学的数学成绩总体上进步了两分的平均分,可以说是取得了很大的进步。作为老师,我感到很欣慰。现对这个学期的工作进行一个总结,让之后的工作取得更大的进步。
一、教学方法
这个学期我改变了我之前的教学方法,在原来的教学方法的基础上进行了改进,让课堂变得更加的有趣。在上个学期的时候,我发现同学们相比于数学、语文等这些课程,对音乐、美术这一类充满趣味性的课程更感兴趣,更期待。所以,我认为把课堂变得生动有趣,能够激发同学们的学习兴趣。
我一共改进了两个方面,一个是增加了与同学们之间的互动,一个是改变了我上课的语言。我这个学期,在上课的时候,提问的频率增加了。我不再是传授给同学们知识,而是让同学们和我一起发现知识,这样大大的增加了学生的学习兴趣。我的课堂语言也不再是死板的陈述书上的内容,而是让我的话语变得更加的有趣,肢体语言也更加的丰富,能够吸引同学们的注意力。
这样下来,同学们注意力更加的集中,更爱上课了,而不是像之前那样,为了有一个好的成绩而不得不听课。
二、后进生的转化
后进生的问题向来是每个老师最头疼的问题,优生都是一样的爱学习,但后进生是不一样的不爱学习,每一个学生不想学习的原因都不一样,所以后进生的'转化是很有难度的,但对班级来说又是至关重要的。
我把自己当做学生的朋友,平时多跟他们聊天、交流、谈心,从中找出他们不爱学习的原因,解决这个阻碍他们学习的因素,让他们喜欢学习。了解之后发现,其中几个同学都是认为数学太难了,自己肯定学不会,所以干脆不学。还有一部分同学是因为学不会,就干脆放弃。
其实初中数学的难度并不大,只要认真学,多花一点时间,就能够学好。对于这些同学,我会在课下多花时间辅导他们的学习,让他们一个一个的理解数学的知识点,把难度降低。
一个学期下来,这些同学的数学成绩都有了进步,有的进步的大一点,有的进步的少一点,但都有了进步。这个结果我自己也很满意,在下一个学期,我会继续进行后进生的转化工作,让他们的数学成绩变得更好。
我会不断的尝试新的教学方法,找到最适合的那一个,帮助同学们把数学知识掌握得更好。
◈ 初中数学教案模板步骤
当我还徜徉在圣诞节浪漫的氛围中,当我的耳边还留有“when christmas come to the town” 美妙旋律的余音时,20**年已乘着极地特快列车呼啸而去,20**年也伴随着新年钟声飘然而至。细细回想20**年,对我来说真是飞跃的一年。在这一年里,无论是学习方法、态度还是纪律都比小学更上了一层楼。下面,我就这2点简单的总结一下。
(一) 学习
在这个学期里,老师为我们的学习付出了许多心血,我们也为自己的学习洒下了辛勤的汗水。总结这个学期的学习,主要有以下几个方面:
第一,学习态度比较端正。能够做到上课认真听讲,不与同学交头接耳,不做小动作,自觉遵守课堂纪律;对老师布置的作业,能够认真完成;对不懂的问题,主动和同学商量,或者向老师请教。
第二,改进了学习方法。中学的学习与小学有许多不同。小学时代我们就像老师的仆人,被老师催着赶着向前走。而初中更注重自主学习,老师讲的不再满足我们的需要。于是,我给自己订了一个学习计划:
(1)坚持做课外习题。
(2)上课要积极发言。对于没有听懂的问题,要敢于举手提问。
(3)每天的家庭作业,做完后先让家长检查一遍,把做错了的和不会做的,让家长讲一讲。把以前做错了的`题目,经常拿出来看一看,复习复习。
经过自己的不懈努力,这学期的各门功课,都取得了较好的成绩。
第一次月考语文103.5分,数学91分,英语97分。()位班级第6名,年级第39名。期中考试语文93分,数学93分,英语96分。位班级第1名,年级第8名。除此之外,还在全国中学生英语竞赛中以136分的成绩获一等奖,位大连市第10名,年级第1名。
取得了这些成绩,只代表过去。我相信,只要我不懈努力,在20**年我会取得更优异的成绩!
(二) 纪律
在纪律方面,基本可以做到:尊重教师,同学之间可以真诚相待;能遵守学校各项纪律,遵守公共秩序,遵守社会公德;不迟到、不早退、不旷课;上学穿校服;举止文明; 有良好的卫生习惯,不乱扔废弃物。
老师说过,纪律是学习的保证。没有纪律,何谈学习?在下学期,我会再接再厉,争取在纪律方面做得更好。
著名作家张洁在散文《我的四季》中说道:“找到了水源,才发现没有带盛水的容器。”在生活中,我们也常常没有充分的准备便急急上路。经历了艰辛却遭遇失败,这样的经验让我们痛心,并要付出加倍的代价来记取。
让我们以今天的荣誉为起点,以今天的不足为,扬起理想的风帆,在20**年这片辽阔无垠的大海中向成功的港湾远航!
◈ 初中数学教案模板步骤
一、业务学习
加强学习,提高思想认识,树立新的理念 . 坚持每周的政治学习和业务学习,紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构建新理念有机的结合起来。通过学习新的《课程标准》,认识到新课程改革既是挑战,又是机遇。将理论联系到实际教学工作中,解放思想,更新观念,丰富知识,提高能力,以全新的素质结构接受新一轮课程改革浪潮的“洗礼”。
二、新课改
通过学习新的《课程标准》,使自己逐步领会到“一切为了人的发展”的教学理念。树立了学生主体观,贯彻了民主教学的思想,构建了一种民主和谐平等的'新型师生关系,使尊重学生人格,尊重学生观点,承认学生个性差异,积极创造和提供满足不同学生学习成长条件的理念落到实处。将学生的发展作为教学活动的出发点和归宿。重视了学生独立性,自主性的培养与发挥,收到了良好的效果 .
三、教学研究 .
教学工作是学校各项工作的中心,也是检验一个教师工作成败的关键。一学期来,在坚持抓好新课程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的教育教学资源,大胆改革课堂教学,加大新型教学方法使用力度,取得了明显效果,具体表现在:
(一)发挥教师为主导的作用
1 、备课深入细致。平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。教案编写认真,并不断归纳总结经验教训。
2 、注重课堂教学效果。针对初二年级学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点, 突破难点。
3 、坚持参加校内外教学研讨活动,不断汲取他人的宝贵经验,提高自己的教学水平。经常向经验丰富的教师请教并经常在一起讨论教学问题。听公开课多次,自己执教二节公开课,尤其本学期,自己执教的公开课 , 学校领导和教师们给我提出了不少宝贵的建议,使我明确了今后讲课的方向和以后数学课该怎么教和怎么讲。本年度外出听课 12 节,在校内听课 32 节。
4 、在作业批改上,认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。
◈ 初中数学教案模板步骤
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的'公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例
一、教学目标
(一)知识教学点
1.使学生能利用公式解决简单的实际问题
2.使学生理解公式与代数式的关系
(二)能力训练点
1.利用数学公式解决实际问题的能力
2.利用已知的公式推导新公式的能力
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美
二、学法引导
1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点
2.学生学法:观察→分析→推导→计算
三、重点、难点、疑点及解决办法
1.重点:利用旧公式推导出新的图形的计算公式
2.难点:同重点.
3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差
四、教具学具准备
投影仪,自制胶片。
五、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式
六、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏
在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题
板书: 公式
师:小学里学过哪些面积公式?
板书: S = ah
(出示投影1)。解释三角形,梯形面积公式
【教法说明】让学生感知用割补法求图形的面积。
(二)探索求知,讲授新课
师:下面利用面积公式进行有关计算
(出示投影2)
例1 如图是一个梯形,下底 (米),上底 ,高 ,利用梯形面积公式求这个梯形的面积S。
师生共同分析:
1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?
2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 等)
学生口述解题过程,教师予以指正并指出,强调解题的规范性.
【教法说明】
1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量
2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯
(出示投影3)
例2 如图是一个环形,外圆半径 ,内圆半径 求这个环形的面积
学生讨论:
1.环形是怎样形成的
2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导
评讲时注意
1.如果有学生作了简便计算 ,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算
2.本题实际上是由圆的面积公式推导出环形面积公式
3.进一步强调解题的规范性
教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径
测试反馈,巩固练习
(出示投影4)
1.计算底 ,高 的三角形面积
2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长 是多少?当 时,求t
3.已知圆的半径 , ,求圆的周长C和面积S
4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走 千米,下坡时每小时走 千米。
(1)求A地到B地所用的时间公式。
(2)若 千米/时, 千米/时,求从A地到B地所用的时间。
学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.
【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展
师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式
七、随堂练习
(一)填空
1.圆的半径为R,它的面积 ________,周长 _____________
2.平行四边形的底边长是 ,高是 ,它的面积 _____________;如果 , ,那么 _________
3.圆锥的底面半径为 ,高是 ,那么它的体积 __________如果 , ,那么 _________
(二)一种塑料三角板形状,尺寸如图,它的厚度是 ,求它的体积V,如果 , , ,V是多少?
八、布置作业
(一)必做题课本第22页1、2、3第23页B组1
(二)选做题课本第22页5B组2

